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In the present paper, a method to model a periodically stuck constrained elastic layer
applied to a beam is proposed. The periodic distribution of the interface conditions enables
one to use an homogenization technique. A simpli"ed homogenization method is presented,
which relies on kinematic assumptions on the shape of the displacement "eld in the beam.
The potential and kinetic energies are then calculated to carry out a "nite element
formulation of the problem. Using the homogenized beam element, the "rst "ve natural
frequencies are computed. These are compared to a conventional "nite element modelling.
The two models are in good agreement. However, a tremendous reduction of the number of
degrees of freedom (d.o.f.) needed is achieved using the homogenized "nite element beam (63
d.o.f.), compared to the classical "nite element model (1500 d.o.f.).

( 2000 Academic Press
1. INTRODUCTION

The damping of vibrating structures is usually accomplished by applying damping layers on
them. However, it was recently observed experimentally that non-continuous adhesive
conditions could be performed better than continuous ones. The purpose of the present
paper is to propose a "rst model and understanding of this type of coating. A simple
structure was therefore selected for the present study. In this particular case, a constrained
viscoelastic material is set down on a plate in a particular way: the damping layer is only
glued to the base plate in speci"c areas. This is practically achieved by inter-spacing an
ultra-thin plastic "lm, with periodically perforated square holes (see Figure 1). The aim of
this work is to predict the dynamic behavior of such a coated plate. To simplify the analysis,
only the elastic behavior of the system is considered. This will already give a rough idea of
how energy can be dissipated by observing the density of strain energies. Modelling
analytically the dynamic behavior of this kind of system is a di$cult task, considering the
type and the number of interface conditions one has to take into account. On the other
0022-460X/00/440683#14 $35.00/0 ( 2000 Academic Press



Figure 1. Non-uniformly stuck sandwich plate.
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hand, using a "nite element calculation will give rise to an enormous number of degrees of
freedom. This is because the complicated interface conditions will require an adapted mesh.
In the areas where a change of interface conditions is occurring, namely stuck or unstuck,
the displacement "eld varies quickly. To be accurately represented, singularities in
mechanics require an extremely re"ned "nite element mesh. This leads to a tremendous
number of degrees of freedom, considering that, an equivalent structure with continuous
interface condition (classical constrained layer damping) will be one dimensional and
geometrically simple.

Taking advantage of the periodicity of the structure, the modelling is carried out using
a particular homogenization technique. Homogenization is a well-established technique in
composite material science [1, 2]. In order to obtain equivalent mechanical properties, one
usually employs the rule of mixture. However, other "elds of material or mechanical
engineering have bene"ted from it, like for example in #uid}structure interaction problems
or thermal problems. The principle of homogenization is to replace the real structure, which
is discontinuous, by an equivalent continuous structure. The discontinuity can be of any
type, namely geometrical like here, or due to locally variable mechanical properties like in
composite structures or #uid}structure interaction for example. This will induce
discontinuous displacement "elds as well. At the end of the process, the real system is
replaced by an equivalent continuous system, in terms of its geometry or material properties
and of its displacement "elds, which is representative of the global behavior of the initial
system. Discretization of the homogeneous system using a "nite element method can then
be accomplished at a reasonable computational cost.

Further simpli"cations have been introduced so as to study the e!ect of the periodical
interface conditions on the vibrational behavior of the beam without introducing too much
complexity at this stage. The studied structure is assumed to be of beam type. The
discontinuities only exist in the x direction so the problem becomes completely one
dimensional.

2. SIMPLIFIED HOMOGENIZATION

Even though some general homogenization procedure exists [1}3], using a simpli"ed
approach when possible is advisable. The classical procedure lies in homogenizing the
governing and interface equations. The homogenized solution can then be obtained by
solving the homogenized equations. An approximate solution can be provided by
discretizing the previous equations, using the "nite element method. Sometimes, when
possible, this goal can be achieved in a more convenient way by calculating directly the
homogenized expressions of the kinetic and potential energies of an elementary cell of the
structure [4}6]. Performing a "nite element formulation of the problem is then
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straightforward. Considering an elementary cell, the di!erent steps required by the
proposed method are then: (1) assuming a priori displacement "elds in an elementary cell;
(2) calculating the potential and kinetic densities of energy in an elementary cell;
(3) choosing the variables to homogenize; (4) calculating the homogenized potential and
kinetic energy densities; and (5) performing the formulation of the homogenized beam
element.

Obviously, the "rst stage is the most important and delicate one. It is clear that apart
from geometrically simple cases, it will be di$cult to complete it. This is the main limitation
of the method.

3. HYPOTHESIS AND MODELLING

Assume that the main conditions for using the homogenization technique are ful"lled,
namely (1) the system is showing some kind of periodicity, (2) the characteristic dimension
of a period, which is one of the elementary cell, is small with respect to the dimension of the
system.

Here, the periodicity is given by the stacking sequence of the viscoelastic material. The
characteristic dimension is represented by the length e of the related cell, which is small
compared to the total length ¸ of the beam.

An elementary cell is a composite beam made of three layers: the lower beam (1), the
mastic (2) and the upper beam (3) (Figure 2). Layer 2 is itself divided into two zones: the
&&sliding'' zone (I) and the &&stuck'' zone (II) (Figure 2).

The whole system is a composite beam, so that the usual beam assumptions are employed
(one-dimensional state of stresses). The upper and lower beams are assumed to be made of
aluminium and thin enough to undergo only tension strains (the shearing strains are
neglected). On the contrary, shearing e!ects as well as tension e!ects have to be considered
in layer 2, as the material is less sti!er than the aluminium. The Timoshenko assumption is
employed in that case, that is the transverse shear stress is constant through the thickness of
layer 2. More precisely, the modelling assumptions are the following:

1. Perfectly sliding interface condition between layers 1 and 2 in zone I.
2. Perfect sticking interface condition between layers 1 and 2 in zone II.
3. Beams 1 and 3 follow the Euler}Bernoulli assumptions.
Figure 2. Elementary cell description.
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4. In zone II, the system is similar to a classical constrained layer beam (see [7}9] for
references on constrained layer beam theory), and the discontinuous gluing condition
has no in#uence on the general behaviour of the system in zone I.

5. In zone I, the system is considered to behave like an association of a single beam (beam
1) and a two-layered beam: actually the selected modeling will make the true in the
middle of domain I.

6. Straight sections remain straight after deformation in all layers.

The displacement "eld components are (1) the longitudinal displacement v
i
(x, z): i"1 for

layer 1, i"2I for layer 2 in domain I, i"2II for layer 2 in domain II and i"3 for layer 3,
(2) the transverse displacement w (x).

Remark. Assumptions 4 and 5 are actually proposing a model for the section rotation.
Hypothesis 4 assumes that the discontinuity e!ect is negligible in domain II. Obviously,
there is a transition area where this is not realistic. In this area, the section rotation will vary
from the one of a classical Euler}Bernouilli beam to the one of a three-layered beam.
Depending on the length of the unstuck area, the section rotation can behave as
a discontinuous or continuous function of x, when varying from one model to another. It is
here proposed to approximate the section rotation by a quadratic function of x and to
assess a posteriori the validity of the assumption.

¸ayers 1 and 3: Both longitudinal displacements v
1
(x, z) and v

3
(x, z) are of the same kind:

v
1
(x, z)"v0

1
(x)!z

dw(x)

dx
,

(1)

v
3
(x, z)"v0

3
(x)!Az!

h
1
2
!

h
3
2
!h

2B
dw(x)

dx
,

the exponent &&0'' is referring to the value of the variable at mid layer.
¸ayer 2, domain II: As stated before, shearing deformations are dominant in the viscoelastic

layer. According to Timoshenko's hypothesis, an additional variable h
2
(x) is needed:

v
2II

(x, z)"v0
2II

(x)#Az!
h
1
2
!

h
2
2 B h

2
(x). (2)

Since the sticking conditions between the layers 1/2 and 2/3 are supposed to be perfect. v
2

must ful"ll the following continuity equations:

v
2IIAx,

h
1
2 B"v

1 Ax,
h
1
2 B ,

(3)

v
2IIAx,

h
1
2
#h

2B"v
3 Ax,

h
1
2
#h

2B .

Those relationships allow one to express h
2

and v0
2

as a function of v0
1
, v0

3
and dw/dx:
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dw
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¸ayer 2, domain I: A variable /
2
(x) related to the angle of section rotation is introduced

in order to take into account the shearing e!ects:

v
2I

(x, z)"v0
2I

(x)#Az!
h
1
2
!

h
2
2 B/

2
(x). (5)

Assumptions 4 and 5 and continuity conditions between domains I and II are expressed
by the following relationships:

/
2A

e
qB"h

2A
e
qB , /

2A
e
2B"!

dw

dx A
e
2B , /

2 Ae!
e
qB"h

2 Ae!
e
qB , (6)

where &&1/q'' stands for the ratio between the length of the sliding area to the one of the
elementary cell.

Further assumptions have now to be made in order to determine the function /
2
(x) for

x between e/q and e!e/q. A quadratic polynomial interpolation approximation is chosen
for /

2
(x):

/
2
(x)"ax2#bx#c, (7)

where a, b and c are determined using the relationships (6), leading to the following
expression:

u
2
(x)"2C

q

ee (q!2)D
2

Ch2Aee!
ee
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2A

ee

q B#2
dw

dx A
ee
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#

q
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2 A

ee

q B!q (q#2)h
2 Aee!

ee

q B!4q2
dw

dx A
ee

2 BD x (8)
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1

(q!2)2 Cq (q!1)h
2 A

ee

q B#4(q!1)
dw
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ee

2 B#qh
2Aee!

ee

q BD .

Moreover, the displacement must be continuous at the interface between the layers 2
and 3:

v
2I Ax,

h
1
2
#h

2B"v
3 Ax,

h
1
2
#h

2B , (9)

so that

v0
2I

(x)"v0
3
(x)!

h
2
2

/
2
(x)#

h
3
2

dw

dx
(x). (10)

Finally, v
2I

(x, z) is given by

v
2I

(x, z)"v0
3
(x)#

h
3
2

dw

dx
(x)#Az!

h
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!h

2B/
2
(x). (11)



Figure 3. Variation of /
2

in zone I, between e/q (0) and e!e/q (0)03):** quadratic approximation; #]"nite
element calculation.
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Notice that as the following relationships are satis"ed:

v
2IA

e
q

, zB"v
2IIA

e
q

, zB , v
2IAe!

e
q

, zB"v
2II Ae!

e
q

, zB , (12, 13)

and the displacement "eld v
2

is continuous all through layer 2.

Remark. Choosing a quadratic interpolation to model the section rotation in domain I is
completely arbitrary and intuitive at this stage. This can only be justi"ed by a posteriori
results. Alternatively, a "nite element calculation can be performed, which shows that the
two models follow the same tendencies (Figure 3).

4. ENERGY IN AN ELEMENTARY CELL

4.1. POTENTIAL ENERGY

Once the displacement "eld is known in the whole elementary cell, the strains and stresses
"elds can be obtained, enabling to calculate the elastic energy in a cell. It is depending on the
functions v0

i
, w, v0

2
, h

2
and /

2
, as well as on the characteristics of each layer i: h

i
(thickness),

o
i
(density), E

i
(Young's modulus), G

2
(mastic shear modulus) and b (beam width). Actually,

among the displacement functions, the only independent displacement functions are v0
1
, v3

0
and w (refer to equations (4) and (6)). Nevertheless, these notations are used to keep the
formulae simple.

¸ayer 1 or 3: According to the Euler}Bernouilli assumptions the only non-zero quantity
is the longitudinal strains e

xx
:

e
xx
"

dv
i

dx
"

1

E
i

p
xx

. (14)

The potential energy is expressed by

E
pti
"

E
i
]b

2 P
e

0
Chi A

dv0
i

dxB
2
#

h3
i

12 A
d2w

dx2B
2

D dx for i"1 or 3. (15)
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As stated before, the displacement "eld in layer 2 is di!erent from that in the other layers
(see equation (11)).

¸ayer 2: There are two di!erent kinds of strains and stresses:

f tensile: p
xx
"E

2
e
xx

,
f shear: p

xx
"2G

2
e
xz

.

The expression of the displacements "elds is changing depending on the sticking
condition encountered, so that

In Domain I: The strains are the following:

e
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dv0
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3
2
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dx2
#Az!
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2
!h
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2
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,

(16)

e
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"
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#

dw

dxD ,

and the tensile strain energy can be expressed by
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the shear strain energy being
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2
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2
#2/

2

dw

dxD dx,

where /
2

is given by equation (6).
In Domain II: The tensile strain energy is

E
pt2II

"

E
2
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and the shear energy is

E
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G
2
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4.2. KINETIC ENERGY

The kinetic energy can be easily obtained from the displacement "elds, and is given
by

E
ci
"

o
i
]b]h

i
2 P

e

0

(vR 2
i
#wR 2) dx for i"1, 2 or 3 (21)

5. HOMOGENIZATION PRINCIPLE

The main objective to be accomplished is homogenizing the energies calculated before.
As seen before, the energies are function of v

1
(x), v

2I
(x), v

2II
(x), v

3
(x), w (x), h

2
(x) and u

2
(x).

On the other hand, from equations (1), (4), (8) and (11), one can see that these can be
expressed as a function of v

1
(x), v

3
(x) and w(x). Consequently, the energies in the composite

beam will only depend on v
1
(x), v

3
(x) and w(x).

One has to bear in mind that the quantity x that has been used throughout the pre-
vious sections is linked to an elementary cell. It is actually describing the behavior of
the system at the cell scale. If now a particular cell i is picked up, a macroscopic scale
is introduced, which is that of the structure. Let us note the characteristic quantity of
this scale X (see Figure 4). Homogenizing the composite structure means determining the
displacements <

1
(X), <

3
(X) and=(X), which are related to v

1
(x), v

3
(x) and w (x) in a cell

i in the following way:

v0i
1

(x)"<0
1
(x#X)"<0

1
(X)#x

d<0
1

dX
(X)#

x2

2

d2<0
1

dX2
(X)#2, (22)

v0i
3

(x)"<0
3
(x#X)"<0

3
(X)#x

d<0
3

dX
(X)#

x2

2

d2<0
3

dX2
(X)#2, (23)

wi(x)"=(x#X)"= (X)#x
d=

dX
(X)#

x2

2

d2=

dX2
(X)#2. (24)

The homogenization process is then equivalent to obtaining expressions for the energies
as a function of X, <

1
(X), <

3
(X) and = (X), and to get rid of x. This can be done, using

equations (23) and (24), by integrating the energy densities over the x-domain.
Figure 4. The double scale.
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The zeroth order approximation of the densities of potential and kinetic energies are then
given by

e
pt0

"

1

h
1
#h

2
#h

3 A
t
~2
e2

#

t
1
e
#t

0
hggiggj
extension@compressure

in layer 2

# c
0hij

shearing
in layer 2

# p
0hij

extension@compressure
in layer 1 !/$3

B (25)

and

e
k0
"

1

h
1
#h

2
#h

3

(e
kv0
#e

ckc0
#e

ckb0
), (26)

where e
kv0
#e

ckc0
#e

ckb0
are the densities of kinetic energy in layers 2, 1 and 3, respectively,

and are given together with t
~2

, t
1
, t

0
, c

0
and p

0
in Appendix A. Using Equations (23) and

(21) derivatives of <
1
(X), <

3
(X) and= (X) with respect to X will appear. One has to then

carefully select the Taylor expansion order (23) and (24) so that all energy quantities are
properly represented: (1) insu$cient expansion order will incorrectly describe the behavior
of the system at the cell scale (the characteristic sticking quantity q must be present),
(2) higher expansion order will lead to unnecessary complicated expressions.

Referring to reference [10] one can show that to provide a zeroth order approximation of
the energies a second order expansion for <

1
(X) and <

3
(X) and a third order expansion for

=(X) are su$cient.

6. HOMOGENIZED FINITE ELEMENT BEAM

Once the homogenized potential and kinetic energies are determined, formulating an
associated "nite element is quite straight forward. Appropriate interpolation functions have
to be selected now, according to the following criteria:

* the displacement "elds are continuous,
* all derivatives appearing in the energies expression are correctly represented using the

chosen interpolation functions,
* if n is the highest order of derivatives appearing in the energies expression, all the

derivatives up to the n!1 order must be continuous.

Energy expressions show derivatives up to

* the second order for the longitudinal displacements <
1
(X) and <

3
(X),

* the third order for the transverse displacement= (X).

The chosen interpolation functions must then ensure the continuity of <
i
(X), d<

i
(X)/dX,

=(X), d=(X)/dX and d2=(X)/dX2. To meet these conditions, Hermite polynomials of
order 1 for the longitudinal displacements and order 2 for the transverse displacement are
employed.

The resulting beam element has two nodes and seven-d.o.f. per node. <
1
(X), <

3
(X) and

=(X) are approximated using the following formula:

<0
i
(X)"A!3

X2

¸2
#1#2

X3

¸3B<0
i1
#AX!2

X2

¸

#

X3

¸2B
d<0

i1
dX

(27)

#A3
X2

¸2
#

X3

¸3B<0
i2
#A!

X2

¸

#

X3

¸2B
d<0

i2
dX

for i"1 or 3,
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=(X)"A1!10
X3

¸3
#15

X4

¸4
!6

X4

¸4B=1A!6
X3

¸2
#X#8

X4

¸3
!3
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¸4B
d=

1
dX

#A
X2

2
!

3X3

2¸
#

3X4

2¸2
!

X5

2¸3B
d2=

1
dX2

#A10
X3

¸3
!15

X4

¸4
#6

X5

¸5B=2
(28)

#A!4
X3

¸2
#7

X4

¸3
!3

X5

¸4B
d=

2
dX

#A
X3

2¸
!

X4

¸2
#

X5

2¸3B
d2=

2
dX2

,

where ¸ is the length of an element.

7. VALIDATION

The purpose of the new beam element is to provide an accurate though cost-e!ective
approximation of the global elastic behavior of the studied composite structure. Validation
of the element can be achieved using a reference model, that is believed to faithfully
represent the structure. The commercial "nite element code ANSYS supplies the reference
model, which is constructed using the following elements: (1) BEAM3 to model the upper
and lower layer, (2) PLANE42 to model the viscoelastic core.

In section 4, an a priori polynomial interpolation was proposed to approximate the
section rotation in layer 2, domain 2 (see equation (8)). This is not the only possibility, and
Table 1 presents the results obtained using the following models:

* ANSYS model the reference solution,
* linear interpolation for the section rotation in layer 2, between the values at the end of

domain I and the value at the middle of it (model 1),
* quadratic interpolation: the chosen one (model 2),
* in layer 2 the continuity condition at the interface between domain I/domain II is

relaxed, so that inside domain I, the section rotation is expressed by (model 3)

/
2
(x)"!

dw

dx
(x). (29)
TABLE 1

Comparison of ,rst ,ve eigenfrequencies obtained through di+erent model

ANSYS Model 1 Model 2 Model 3

Eigenfrequency 1 9)82 Hz 10)41 Hz 10)30 Hz 8)54 Hz
* (6%) (4)89%) (13)0%)

Eigenfrequency 2 15)26 Hz 16)16 Hz 15)99 Hz 13)34 Hz
* (5)93%) (4)78%) (12)58%)

Eigenfrequency 3 22)96 Hz 24)21 Hz 23)98 Hz 20)48 Hz
* (5)44%) (4)44%) (10)8%)

Eigenfrequency 4 30)73 Hz 32)2 Hz 31)93 Hz 27)89 Hz
* (4)78%) (3)9%) (9)24%)

Eigenfrequency 5 40)71 Hz 42)44 Hz 42)13 Hz 37)58 Hz
* (4)25%) (3)49%) (7)69%)
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Calculations are carried out using the following characteristics:

* cells:

number of cells"20,
cell length"e"0)06 m,

* sticking parameter:

q"4,

* mechanical characteristics:

E
1 033

"7)037]1010 Pa,

o
1 033

"2700 kg/m3,

h
1 033

"0)001 m,

E
2
"1)106 Pa,

l
2
"0)48,

o
2
"1500 kg/m3,

h
2
"0)008 m,

* Number of "nite elements:

n
ele

"8,

* boundary conditions: the beams is free}free.

The results in Table 1 show that models 1 and 2 give good results with respect to the
reference solution. On the other hand, model 3 appears to be too soft: as it is less
constrained than the other two models, the calculated frequencies are lower than the one for
models 1 and 2. One can then draw the following conclusions:

* The in#uence of domain II over domain I cannot be neglected: shearing energy is an
important component of the total energy stored in domain I.

* From the comparison between models 1 and 2, one can see that model 2 is the best of the
two, enabling one to conclude that the in#uence of domain II over domain I is
decreasing quickly.

* The proposed model (model 2) provides a good approximation of the global elastic
behavior of the real structure.

The evolution of the discrepancy between the reference model and the proposed model
are at "rst sight a bit surprising for anyone familiar with "nite element calculations, as the
percentage of error between the two models is decreasing with the frequency. This is because
the homogenized element is incorporating another layer of approximation on top of the
usual "nite element discretization process, which is due to the homogenization process.
Assuming that the convergence is achieved with respect to the "nite element discretization,
one should really read the results in Table 1 as being a comparison of how good the
homogenized model is with respect to a full model. Indeed, further re"nement of the "nite
element model showed the same behavior.
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One should notice that 63 d.o.f. (9 nodes) were su$cient to obtain, using the
homogenization techniques, results comparable with the reference solution. In return, the
ANSYS model needed 1500 d.o.f. achieve the same results.

The proposed method involves quite cumbersome analytical calculations, which can be
seen as the main drawback. However, the systematic use of a symbolic calculus software
(Maple), enables one to handle it, making the proposed method easy and attractive to use.

8. CONCLUSION

A method to model a three-layered composite beam, with periodically stuck interface
conditions, was presented. It is based on a simpli"ed homogenization technique. The main
bene"t of the proposed method is the tremendous decrease in the number of d.o.f. needed to
accurately represent the elastic behavior of the structure. The simpli"ed homogenization
technique, which is an energy approach, directly provides expressions for the homogenized
energies in the structure, making it very convenient to use for "nite element formulations.

However, one has to bear in mind that the proposed model is extremely e$cient in the
low-frequency range, but will fail in the high-frequency range. This is intrinsically due to
the use of the homogenization technique. Modelling the behavior of the structure in
the high-frequency range will require a re"ned meshing which is not compatible with the
homogenization principle. When using homogenization, the size of the meshing should be
greater or at least equal to the periodicity of the structure (length of an elementary cell).

To overcome the main di$culty involved with the homogenization technique, which is
complex analytical calculus, a systematic use of a symbolic computation software was
made. In this way, the proposed method happens to be not only accurate but also
convenient and easy to use.

This paper was mainly focused on the modelling of the elastic aspect of the dynamic
behavior of the composite beam. As the middle layer is made of viscoelastic material,
a study of the damping properties of this kind of coating would be a natural sequel to this
work. The technical extension of the proposed element to take into account the damping
possibility of composite beam involves the use of a viscoelastic rheological law for the
damping material. This aspect of the problem will be the subject of further research.
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